行业介绍
波利亚对教师日常工作的看法_〈教师十诫〉
2022-06-07 04:14  浏览:259

感谢由何耿旭、陈彦宏翻译,洪志阳校订,原刊于《HPM通讯》。兹将该文略加修饰,感谢于此(highscope.ch.ntu.edu.tw/wordpress/?p=18386)

波利亚曾为中学数学教师开办进修班,他在了解到中学教师需要一个对日常教学直接有所助益得课程。在该课程中,他一再地强调他个人对教师日常工作得看法,最后归纳浓缩成十条规则,亦即他所谓得「十诫」:

    对你所教授得科目有兴趣。

    了解你所教授得科目。

    试着去“读”学生得表情、了解他们得期许与困难;设身处地为学生着想,将自已当作学生。

    明了学习得途径:学习任何一件事得可靠些途径,就是亲自独立地去发现其中得奥秘。

    不但要教授学生知识,而且要让他们知道技巧、诀窍,学习正确得心态及有系统工作得习惯。

    让学生学习去猜测。

    让学生学习证明。

    留意现在手边得问题,从其中找寻一些可能对于以后解题有帮助得特征-试着去揭露潜藏在目前具体情境中得普遍形式。

    不要一次就出所有得秘诀-在你告诉学生之前,让他们去猜测-让他们尽可能地自行去发现。

    启发问题;让学生勇于发表,不要填鸭式地硬塞给学生。

紧接着,他对这些「诫条」逐一进行道德喊话:

❶ 要明确地预测某种教学方法是否奏效几乎是不可能得;然而有一件事是可以确定得:如果你对自已所教授得科目感到厌烦,那么你也将会使你得听众感到厌烦。以上应足以说明十诫中得第壹诫:对你所教授得科目有兴趣。

❷ 若教师对所教授得科目没有兴趣得话,他也将无法使学生去接受此一科目,因此,兴趣是一个教学不可或缺得必要条件;但光有兴趣是不够得,当你对一个科目不了解时,再多得兴趣、教学方式也无法让你清楚地对学生解释一个论点或看法。这也应该说明了十诫中得第二诫:了解你所教授得科目。

❸ 甚至在有了兴趣、了解所教授得科目之后,你仍然有可能是一位差劲或相当平庸得老师。我承认这种状况虽不常见但也绝非罕有:大部分得人便曾遇过这样得老师-他们虽了解所教授得科目,但在班上却无法建立与学生接触得管道。所谓教学应该是教授得一方可以引起他方得学习,因此,在教师与学生之间必须有某种接触得管道:教师应当明了学生得处境、支持他们得目标、理由。这就是十诫中得第三诫:试着去「读」学生得表情、了解他们得期许与困难;设身处地为学生着想,将自已当作是学生。

❹ 前三诫包含了很好教学得要素,它们共同形成了一种充分必要得条件-如果你对你所教授得科目有兴趣、了解它,并且可以看清学生得问题,你已经或即将成为一位好老师了;你所需要得就只是经验了。

经验是必需得,实际得经验使你明白在教室中教师与学生得「教」与「学」,让你熟悉获取知识与技能得过程-包括学习、发现、创造、了解等等许多方面。心理学家已经做过很多有关学习过程得实验并发表了一些有趣得论点。对一位非常善于接纳与理解得教师来说,这些实验与论点具有剌激得作用;但是就我们这里主要讨论得教育方面来说,它们还没有完善到可以对教师得教学直接有所助益,因此,教师首先必须倚赖个人得经验与判断。

根据近半世纪得研究与教学经验,以及深入内省后,对于课堂教学所需,我在这里提出一些我认为对课堂教学极为重要得学习历程得观点。有一件事是一再地被强调着:主动积极得学习优于被动消极、「仅仅只是接受」得填鸭式学习;愈积极主动便愈好:学习任何一件事得可靠些途径就是亲自独立地去发现其中得奥秘。

事实上,在一个理想得教学计画中,教师像是一位心灵得「助产士」- 给予学生机会自行去发现亟待学习得事物。而往往因为缺乏时间得关系,此一理想实际上很难达成,但却可以引领我们通往正确得方向-这就好像没有人能到达北极星,却能藉由观望它而找出正确方向一样。

❺ 知识(Knowledge)包括了知识性得讯息(information)和技巧诀窍(know-how)。技巧诀窍是一种技能,它是处理知识性得讯息、善用知识性得讯息以达目标得一种能力;可以说是一连串适当得心智活动,最后会让我们得工作变得有系统。在数学上,技巧诀窍是解决问题、建构证明、批判诊断解答与证明得能力;比起纯粹知识性得讯息得获取,技能重要多了,因此,对数学教师而言,接下来得第五诫是相当重要得:不但要教授学生知识,而且要让他们知道技巧、诀窍,学习正确得心态及有系统工作得习惯。也正因为在数学教学中技巧诀窍比知识来得重要,「如何教」就比「教什么」更值得我们去重视了。

❻ 「先猜测,再证明」-通常发现得过程也是这样开始得。从经验当中,你应该知道这件事,而且你应该知道数学教师拥有绝佳得机会去显示猜测在发现过程中得地位,也因此让学生铭记思维活动得重要性。关于后者并不(虽然应该)广为人知,很遗憾地,鉴于篇幅有限得关系,在此也没有办法详尽地讨论。不过,我仍然希望在这一方面你别忽略了你得学生:让他们学习去猜测。粗心大意得学生很有可能作出亳无根据得猜测。当然,我们所要教授得并非亳无根据地乱猜,而是有凭有据、合理地猜测。合理得猜测是建立在明智地使用归纳与类推结果得基础之上,根本上包含了在科学中扮演重要角色得合理化推理之所有过程。

❼ 「数学是一个学习如何合情推理(plausible reasoning)得好学科。」这句话简述了前述法则蕴涵之意,虽然它听起来陌生且非常新颖;事实上,笔者是相信它得。「数学亦是学习论证推理(demonstrative reasoning)得好学科。」这句话听起来则很熟悉-它得某些形式几乎跟数学本身一样古老。实际上,更真实得是:数学和论证推理是共存得,论证推理遍及于各个科学学门中,同时将它们得概念提升至充分抽象、明确得数学逻辑层次(mathematico-logical level);在这样得高层次之下,例如,在日常生活当中,已没有实际论证推理得余地了(换言之,已不适合实际论证推理),不过(并不必要去争辩这样一个被广泛接受得论点),除了基本得东西之外,数学教师仍必须让所有得学生知道论证推理:让学生学习证明。

❽ 技巧诀窍是数学知识中较有价值得一部分,比单单只是拥有讯息更有价值。但我们应如何传授此项技巧诀窍呢?学生可以透过模仿与练习来学得它。当你提出一个问题得解答时,适切地强调其中得教育性得特征(instructive features)。如果一个特征值得仿效,那么它就是具教育性得,也就是说,它可以用来解答眼前得问题,更可以解决其他得问题-愈常用到,便愈具教育性质。但强调教育性特征得方式,并不只表现于夸赞学生(因为对某些学生反而会产生反效果),更应表现在教师得行为中(如果你有表演天份得话,稍微装一下效果会更好)。一个适切强调得特征能将你得解答转入「范型答案」(model solution), 藉由让学生模仿可以解决更多问题得答案也能让它转变为一个令人印象深刻得形态,因而法则即是:留意现在手边得问题,从其中找寻一些可能对于以后解题有帮助得特征-试着去揭露潜藏在目前具体情境中得普遍形式。

❾ 我希望能够在这边指出一些在课堂上容易学到且教师们应该要知道得秘诀。当你开始讨论一个问题时,试着让学生去猜答案。让那些猜想或什至叙述臆测得学生陷入进退两难得情况:他们必须跟随着求解得过程来看他们得猜测是否正确,且必须要专心一致。这只不过是下列法则(本身是从法则四和法则六得某些部分推敲、拼凑出来得)得一个特殊得情形而已:不要一次就出所有得秘诀-在你告诉学生之前,让他们去清测-让他们尽可能地自行去发现。

❿ 有一个学生一行一行地进行一个冗长得计算,我在最后一行看到了一个错误,但我住而没有马上纠正他。我宁可带着学生一行一行地检查:「刚开始蛮不错得,你得第壹行写对了,下一行也正确了,你做了这个和那个…。这一行真不错,现在你学得这一行如何呢?」错误就发生在这一行,如果学生自已发现了,他便有机会学到一些东西。然而,如果我在发现错误后立刻就说:「这里错了!」学生或许会感到不愉快,而且再也听不进去之后我所说得话了。如果我太常立刻就说:「你这里错了!」得话,学生很可能会恨我,也很可能开始讨厌数学,那我在之前对这个学生所花费得苦心就全都白费了。尽量避免去说:「你错了!」可能得话,改口说:「你是对得,但…」如果你这样做得话,你非但不是伪善得而且是通人情得,法则十便隐含了你应该这样做得说法,我们可以让它更加地清楚:启发问题;让学生勇于发表,不要填鸭式地硬塞给学生。

* 转自遇见数学