资讯
利用人工智能搜寻自闭症的根源
2017-09-06 12:21  浏览:262

“我们只能像生物学家一样说明自闭症等疾病是由什么引起的。在某个方面,一个科学家可以提出10个问题,而同样在这个方面,机器却有能力提出一万亿个问题,这就是改变传统规则的创新。”(视觉中国/图)

(本文首发于2017年8月31日《南方周末》)

人工智能工具正在帮助揭示自闭症的遗传因素。

对于遗传学家来说,攻克自闭症是一个严峻的挑战,而遗传模式表明其中具有很强的遗传成分。但是,在自闭症中发挥一定作用的数十种已知基因的变体只能解释所有病例的大约20%。要想找到可能有助于形成自闭症的其他变体,就需要在25,000个其他人类基因及其周围DNA的相关数据中寻找线索——这是调查人员难以招架的任务。因此,普林斯顿大学的计算生物学家奥尔加·特洛伊安斯卡亚(Olga Troyanskaya)和纽约市西蒙斯基金会得到了人工智能工具的帮助。

纽约基因组中心创始人、主任兼洛克菲勒大学医学科学家罗伯特·达内尔(Robert Darnell)解释说:“我们只能像生物学家一样说明自闭症等疾病是由什么引起的。在某个方面,一个科学家可以提出10个问题,而同样在这个方面,机器却有能力提出一万亿个问题,这就是改变传统规则的创新。”

特洛伊安斯卡亚将数百个数据集结合在一起,其中有的数据集关乎哪些基因在特定的人类细胞中表现出活性,有的关乎蛋白质是如何发生相互作用的,有的关乎转录因子结合位点和其他关键的基因组特征位于何处。然后,特洛伊安斯卡亚及其研究小组利用机器学习创建了一份基因相互作用图,将已经熟知的少数自闭症风险基因的相互作用跟数千个其他未知基因的相互作用进行对比,寻找其中的类似之处。2016年,他们在《自然-神经科学》杂志上报道说:对比表明,另外2500个基因可能跟自闭症有关。